Step of Proof: adjacent-append
11,40
postcript
pdf
Inference at
*
2
1
I
of proof for Lemma
adjacent-append
:
1.
T
: Type
2.
x
:
T
3.
y
:
T
4.
L1
:
T
List
5.
L2
:
T
List
6.
i
: {0..(||
L1
|| - 1)
}
7.
x
=
L1
[
i
]
8.
y
=
L1
[(
i
+1)]
i
:{0..(||
L1
@
L2
|| - 1)
}. (
x
= (
L1
@
L2
)[
i
] &
y
= (
L1
@
L2
)[(
i
+1)])
latex
by ((((InstConcl [
i
])
CollapseTHEN (Auto'))
)
CollapseTHEN (((RWO "select_append_front" 0)
Co
CollapseTHEN (Auto'))
))
latex
C
.
Definitions
x
:
A
.
B
(
x
)
,
as
@
bs
,
i
j
,
P
Q
,
P
Q
,
x
:
A
B
(
x
)
,
,
Void
,
l
[
i
]
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
,
#$n
,
t
T
,
s
=
t
,
type
List
,
Type
,
{
x
:
A
|
B
(
x
)}
,
,
i
j
<
k
,
A
B
,
P
&
Q
,
A
,
False
,
P
Q
,
a
<
b
,
n
-
m
,
-
n
,
||
as
||
,
n
+
m
,
{
i
..
j
}
Lemmas
iff
wf
,
rev
implies
wf
,
select
append
front
,
nat
wf
,
member
wf
,
le
wf
origin